Ik ben Hilde Eggermont, leerkracht wiskunde aan het Sint-Pieterscollege in Leuven. Ik geef les in het vierde, vijfde en zesde jaar.

Een blokje kaas verdelen

Een tijdje geleden kocht ik een doosje Franse kaas van een bekend merk. Het doosje bevat een blok kaas van 200 gram en vermeldt dat dit acht porties van 25 gram zijn. Er verscheen in de winkel onwillekeurig een glimlach op mijn gezicht omdat ik meteen zag hoe je volgens de drie symmetrievlakken kon snijden

[ Lees meer ]

Roteren in 4D

Elk jaar werken mijn collega Pedro Tytgat en ik een project uit in onze achtuursklassen. We werken dan met een gemengde groep van vijfde- en zesdejaars rond een bepaald thema. Het eerste project in deze reeks waren de speelplaatstekeningen waarover we al schreven in het Spinnenweb van Uitwiskeling 29/1. Enkele jaren geleden werkten we rond dimensies,

[ Lees meer ]

Kantelen

Elk jaar geef ik aan de zesdejaars een extremumprobleem waarvan ze de uitwerking in de vorm van een verslag moeten geven. Deze opdracht is een onderdeel van het werken aan onderzoekscompetenties, namelijk het leren schriftelijk rapporteren van hun resultaten. De leerlingen werken er in groep aan en dus mag de opgave wel wat steviger zijn. Zo een opgave verscheen een hele tijd geleden in Mathematics Teacher. [les] Wanneer je het laatste restje van een doos (gesmolten) roomijs wilt oplepelen, gaat dit het gemakkelijkst als je de bak om één van de zijden kantelt. Spontaan probeer je de bak zo te…

[ Lees meer ]

Statistiek buiten het boekje

De verklarende statistiek gaat over steekproeven en wat je uit steekproefresultaten mag besluiten in verband met de populatie. In deze loep geven we twee aanvullingen ‘buiten het boekje’. De eerste aanvulling gaat in de breedte en is ook voor een breed leerlingenpubliek bedoeld. Op het einde van de lessen statistiek willen we even laten zien hoe ook andere statistischeproblemen op te lossen zijn, analoog maar met andere formules en andere steekproefverdelingen. De tweede aanvulling, voor leerlingen uit wiskundige richtingen, gaat in de diepte en laat iets meer zien van de wiskunde achter de statistiek. Wat zegt de beroemde ‘centrale limietstelling’, die verantwoordelijk is voor het grote belang van de normale verdeling, precies? Hoe kun je bepaalde formulesdie in de lessen statistiek aan bod komen, uit deze stelling afleiden?

[ Lees meer ]