Archief doorzoeken

De toevalsfactor & dichtheid in priemgetallen (Arnout Jaspers)

Arnout Jaspers De toevalsfactor in priemgetallen Dichtheid van priemgetallen Pythagoras (2019) 59/2, 24-26, Pythagoras (2020), 59/4, 24-27 Al jaren laat ik mijn leerlingen in de klas integralen berekenen waarvan ik niet weet of ze belangrijk zijn in een of andere uithoek van de wiskunde, de fysica of de economie. Niet dat ik 'nuttige' integralen prefereer boven integralen zonder aanwijsbare toepassingen. Maar voor mijn leerlingen helpt het wel als ik hen bijvoorbeeld een externe motivatie kan geven voor de lastige berekening van de integraal [latex]\displaystyle \int{\frac{1}{\cos x}}

[ Lees meer ]

Foute bewijzen (Michel Sebille)

Michel Sebille, Impossibles et improbables raisonnements Losanges 46 (2019), 41-44 Onze Brusselse collega geeft in dit artikel enkele foute bewijzen. Het zijn stellingen die overduidelijk niet kunnen gelden. Maar: kunnen de leerlingen precies de vinger op de fout leggen? Dit is leerrijk. Het herinnert hen eraan dat ze kritisch moeten zijn. Bovendien is hiervoor een goede kennis nodig van eigenschappen die wel gelden, zodat ze alvast kunnen bepalen welke stappen niet fout zijn. Eén van die foute bewijzen uit het artikel gaat als volgt. Je kunt het bewijs volgen op figuur 1. Dit is maar een

[ Lees meer ]

Vergeten begrippen (6): Modus tollens

Het begrip dat hier opgerakeld wordt, is afkomstig uit de afdeling logica. Sinds de laatste leerplanhervormingen, begin deze eeuw, is de logica in het secundair onderwijs op de achtergrond geraakt. Het nadenken over logische verwantschappen tussen uitspraken (enkele pijl of dubbele pijl?) en over bewijstechnieken (contrapositie, bewijs uit het ongerijmde ...) werd jarenlang als minder belangrijk beschouwd. Hoewel, bij de nieuwe leerplannen voor de eerste graad, die in september 2019 in voege gegaan zijn, is deze component terecht weer meer in de kijker gezet. Ook het onderwijs van de

[ Lees meer ]

Een intuïtieve manier voor het oplossen van vierkantsvergelijkingen

Een oude techniek in een nieuw jasje Een poosje geleden bekeek ik op het Youtubekanaal Mind Your Decisions een filmpje over het oplossen van vierkantsvergelijkingen zonder gebruik te maken van de discriminantformule. De methode was ontleend aan professer Po-Shen Loh, de coach van het wiskundeolympiadeteam van de Verenigde Staten en professor aan de Carnegie Mellon Universiteit in Pittsburgh. Hij baseerde zich op een oude Babylonische en Griekse benadering. De oude techniek in het nieuwe jasje op Youtube sprak me aan omdat mijn leerlingen af en toe moeilijkheden hebben met het memoriseren

[ Lees meer ]

De 15-puzzel

Een klassieker onder de wiskundige puzzels is de 15-puzzel, die in 1880 uitgevonden en gepatenteerd werd door Noyes Chapman. De uitvinding werd later onterecht geclaimd door de puzzelbedenker Sam Loyd. In een -schuifbord zitten 15 verschuifbare tegeltjes in een geordend patroon. Vaak zijn het de getallen van 1 tot 15 die op de tegeltjes zijn

[ Lees meer ]

Hoe schools mag onze wiskunde zijn?

Enkele jaren geleden gaf een leerling op een taak over logaritmische vergelijkingen het volgende antwoord bij de opgave : Aangezien de bestaansvoorwaarden de oplossingenverzameling al zeker beperken tot , zijn er nog drie mogelijke oplossingen: of . Invullen in beide leden houdt enkel 2 als resultaat over. Bijgevolg . Ik was helemaal met verstomming geslagen.

[ Lees meer ]

De rijkdom van meetkunde

What is the area of the square? [caption id="attachment_18158" align="aligncenter" width="300"] Figuur 1 What is the area of the square?[/caption]   De opgave van figuur 1 sprak mij meteen aan. Net als ik tekent de auteur Ben Orlin graag meetkundige figuren (deels) met de losse hand. Ik vind trouwens van mijzelf dat ik dit [latex]-[/latex] op een degelijk krijtbord [latex]-[/latex] goed kan. Daarentegen suggereert Orlin met de naam van zijn website dat hij niet goed kan tekenen. Valse bescheidenheid? Ik loste de opgave op met de stelling van Pythagoras en zocht niet verder. Maar toen

[ Lees meer ]

Wiskunnend Wiske, de komieke kookplaat

Sinds 2011 organiseert de VUB een wiskundewedstrijd voor leerlingen uit het vijfde en zesde jaar van het secundair onderwijs: Wiskunnend Wiske. In deze wedstrijd moeten groepjes leerlingen in drie voorronden open problemen oplossen, bij voorkeur door wiskundig te modelleren. Ze maken hier een verslag van, dat tegen een bepaalde deadline moet worden ingezonden. De groepjes met de beste verslagen krijgen de kans om aan de finale deel te nemen, die in de lente, klassiek op [latex]\pi[/latex]-dag, plaatsvindt op de VUB-campus in Etterbeek. [caption id="attachment_18138" align="aligncenter"

[ Lees meer ]

Redeneren en puzzelen met grafen

Een graaf bestaat uit ‘knopen’ die wel of niet verbonden zijn door ‘bogen’. De grafentheorie, ontstaan met de bruggen van Koningsbergen in de 18de eeuw, is nu overal aanwezig als wiskundig model voor het internet, sociale netwerken, routeplanners... en doet binnenkort ook haar intrede in de eindtermen wiskunde voor de tweede graad. We laten in deze loep zien hoe leerlingen met grafen (zullen) kunnen redeneren, puzzelen en bewijzen zonder veel voorkennis of algebraïsche hindernissen. Ze leren ook diverse situaties modelleren in een zelfde taal van knopen en bogen. Bij de meeste ‘echte’

[ Lees meer ]