Meetkunde

De gemiddelde schaduw van een voetbal, ook al is hij niet zo rond

Stel dat je tussen de keerkringen woont. Je moet dan minstens naar de Westelijke Sahara of naar het zuiden van Egypte verhuisd zijn. In het gepaste seizoen staat de zon dan ‘s middags in het zenit. Stel bovendien dat je een partijtje voetbal speelt en je schopt de perfect bolvormige voetbal met veel spinkracht de

[ Lees meer ]

Het ABCD van de koordenvierhoeken

Voor een willekeurige driehoek geldt dat de drie hoekpunten op een cirkel liggen, de zogenaamde omcirkel of de omgeschreven cirkel. In dit artikel onderzoeken we of dit ook geldt voor vierhoeken. We gaan na of de hoekpunten van een willekeurige vierhoek altijd op een omcirkel liggen. Als er een omcirkel bestaat, noemen we de vierhoek een koordenvierhoek of een cyclische vierhoek. Als we drie van de vier hoekpunten van een vierhoek nemen, liggen die altijd op een omcirkel. De drie punten zijn immers niet collineair. Opdat de vierhoek een koordenvierhoek zou zijn, moet ook het vierde hoekpunt op deze omcirkel…

[ Lees meer ]

De rijkdom van meetkunde

What is the area of the square? [caption id="attachment_18158" align="aligncenter" width="300"] Figuur 1 What is the area of the square?[/caption]   De opgave van figuur 1 sprak mij meteen aan. Net als ik tekent de auteur Ben Orlin graag meetkundige figuren (deels) met de losse hand. Ik vind trouwens van mijzelf dat ik dit [latex]-[/latex] op een degelijk krijtbord [latex]-[/latex] goed kan. Daarentegen suggereert Orlin met de naam van zijn website dat hij niet goed kan tekenen. Valse bescheidenheid? Ik loste de opgave op met de stelling van Pythagoras en zocht niet verder. Maar toen ik deze opgave aan mijn…

[ Lees meer ]

De meetkunst van Albrecht Dürer, Martin Kindt

Zebra-reeks nr. 55, Epsilon, Amsterdam, 2018, 53 pp., ISBN 978-90-5041-175-2 Het woord ‘meetkunst’ uit de titel verwijst niet enkel naar een oude benaming voor meetkunde, maar ook naar de combinatie tussen meetkunde en kunst. Albrecht Dürer (15de en 16de eeuw) was immers een groot kunstenaar die ook boeken schreef over meetkunde. Hij was niet klassiek geschoold en schreef in het Duits in plaats van in het Latijn, de wetenschappelijke taal van die tijd. Op (studie)reis in Venetië had hij een Latijnse vertaling van de Elementen van Euclides (rond 300 v.C.) op de kop getikt. Met de hulp van een vriend…

[ Lees meer ]

Driehoeken met onderling 5 gelijke zijden en hoeken

Om congruentie van driehoeken te hebben zijn drie voorwaarden vaak voldoende, bijvoorbeeld in het geval ZZZ of ZHZ of HZH (maar niet in het geval HHH). Twee driehoeken die onderling vijf hoeken of zijden gelijk hebben, kunnen per uitzondering gelijkvormig zijn zonder con­gruent te zijn. Dit is het geval bij de zogenaamde 5-con driehoeken. Ze hebben onderling drie hoeken en twee zijden gelijk. Hierover gaat deze korte bijdrage, die leerkrachten uit een vierde jaar aso en tso zou kunnen inspireren tot een interessante onderzoeksvraag. Bekijk even de onderstaande driehoeken: de eerste heeft zijden 8, 12 en 18 en de tweede…

[ Lees meer ]

De formule van Heron

In dit artikel staat de formule van Heron centraal. Deze formule drukt de oppervlakte van een drie­hoek uit in functie van de lengten van de zijden. Naast het gebruikelijke schoolbewijs geven we drie alternatieve, minder bekende bewijzen. Daarbij gaan we een veralgemening tot de opper­vlakte van een willekeurige (niet-gekruiste) vier­hoek niet uit de weg. 1.

[ Lees meer ]

Wiskunde achter beeldverwerking

Bijna alle foto's en films worden tegenwoordig digitaal gemaakt en opgeslagen. We maken kennis met de wiskunde achter een digitale foto. Een digitale foto is een rooster met getallen. Wat is de samenhang met grijswaarden? Welke transformaties kunnen we uitvoeren om het contrast bij te regelen, een 'negatieve' foto te bekomen ...? Wat betekenen de histogrammen die op het schermpje van digitale fototoestellen verschijnen? We tellen ook beelden op en geven voorbeelden van visuele cryptografie: hoe kun je een geheime boodschap of beeld in een ander beeld verstoppen en het er weer uithalen? We gaan ook in op het comprimeren van beeldbestanden. Dit laatste onderwerp gaat wiskundig een stuk verder, daarom beperken we ons tot 'fractale compressie'.

[ Lees meer ]