Meetkunde

Driehoeken met onderling 5 gelijke zijden en hoeken

Om congruentie van driehoeken te hebben zijn drie voorwaarden vaak voldoende, bijvoorbeeld in het geval ZZZ of ZHZ of HZH (maar niet in het geval HHH). Twee driehoeken die onderling vijf hoeken of zijden gelijk hebben, kunnen per uitzondering gelijkvormig zijn zonder con­gruent te zijn. Dit is het geval bij de zogenaamde 5-con driehoeken. Ze

[ Lees meer ]

De formule van Heron

In dit artikel staat de formule van Heron centraal. Deze formule drukt de oppervlakte van een drie­hoek uit in functie van de lengten van de zijden. Naast het gebruikelijke schoolbewijs geven we drie alternatieve, minder bekende bewijzen. Daarbij gaan we een veralgemening tot de opper­vlakte van een willekeurige (niet-gekruiste) vier­hoek niet uit de weg. 1.

[ Lees meer ]

Wiskunde achter beeldverwerking

Bijna alle foto's en films worden tegenwoordig digitaal gemaakt en opgeslagen. We maken kennis met de wiskunde achter een digitale foto. Een digitale foto is een rooster met getallen. Wat is de samenhang met grijswaarden? Welke transformaties kunnen we uitvoeren om het contrast bij te regelen, een 'negatieve' foto te bekomen ...? Wat betekenen de histogrammen die op het schermpje van digitale fototoestellen verschijnen? We tellen ook beelden op en geven voorbeelden van visuele cryptografie: hoe kun je een geheime boodschap of beeld in een ander beeld verstoppen en het er weer uithalen? We gaan ook in op het comprimeren van beeldbestanden. Dit laatste onderwerp gaat wiskundig een stuk verder, daarom beperken we ons tot 'fractale compressie'.

[ Lees meer ]

Verrassende wiskunde

In deze loep komen allerlei problemen aan bod waarvan de uitkomst ons op een of andere manier verrast. Het niveau van de onderwerpen bestrijkt zowel de eerste, tweede als derde graad. Bij sommige problemen blijkt het eerste antwoord dat in je opkomt bij nader inzien totaal fout te zijn. Enkel met een kritische blik op het eindantwoord of een goed onderbouwde, wiskundige redenering kun je anderen (en jezelf!) overtuigen dat het eindresultaat anders is. Sommige problemen sluiten rechtstreeks aan bij de leerstofonderdelen. Zo past een teken-activiteit met vierhoeken in de eerste graad. Een kansspel dat op een verrassende manier leidt tot een fractaal, kan zowel bij rijen als bij kansrekening aan bod komen. Een onverwacht limietgeval hoort dan weer thuis bij de regel van de l'Hospital in de derde graad. Andere problemen in deze loep staan eerder los van de leerstof wiskunde in het secundair onderwijs, maar zijn daarom niet minder interessant. Zoals de reden waarom het lijkt alsof je vrienden op Facebook gemiddeld meer vrienden hebben dan jezelf, en waarom het verkeer soms vlotter kan doorrijden door een welbepaalde straat te verwijderen. In deze loep kunnen de stukjes onafhankelijk van elkaar gelezen worden.

[ Lees meer ]

Numberphile

Bibwijzerbijdrage: 'Numberphile' uit Uitwiskeling jaargang 32, nummer 2. Geschreven door Onbekend.

[ Lees meer ]