Onder de loep

In elk nummer wordt een deel van het leerplan of een aspect van het wiskundeonderwijs onder de loep genomen en uitgewerkt in een ruimer artikel.

Meetkunde van 2D naar 3D en hoger

Meetkunde in hogerdimensionale ruimten staat nergens op het leerplan in het secundair onderwijs. Toch zijn leerlingen meer dan eens geïntrigeerd door de mythische vierde dimensie. In deze loep proberen we antwoorden te geven op hun vragen zonder het begripdimensie heel theoretisch te definiëren. We leggen uit hoe we vierkanten en driehoeken in hogere dimensies kunnen voorstellen en hoe we het aantal punten, lijnstukken, ... van deze lichamen kunnen tellen. Verder proberen we het analytischrekenwerken de vectoralgebra vanuit de vertrouwde driedimensionale ruimte omhoog te tillen naar hogerdimensionale ruimten. Dit gebeurt op basis van analogie.

[ Lees meer ]

Redeneren en puzzelen met grafen

Een graaf bestaat uit ‘knopen’ die wel of niet verbonden zijn door ‘bogen’. De grafentheorie, ontstaan met de bruggen van Koningsbergen in de 18de eeuw, is nu overal aanwezig als wiskundig model voor het internet, sociale netwerken, routeplanners... en doet binnenkort ook haar intrede in de eindtermen wiskunde voor de tweede graad. We laten in deze loep zien hoe leerlingen met grafen (zullen) kunnen redeneren, puzzelen en bewijzen zonder veel voorkennis of algebraïsche hindernissen. Ze leren ook diverse situaties modelleren in een zelfde taal van knopen en bogen. Bij de meeste ‘echte’ toepassingen gaat het om reusachtige grafen en zijn er systematische algoritmen nodig om hierin bv. kortste wegen te vinden, of om alle knopen efficiënt met elkaar te verbinden. Exemplarisch laten we de leerlingen kennis maken met het algoritmisch denken dat hiervoor nodig is.

[ Lees meer ]

Eerstegraadsfuncties

Eerstegraadsfuncties komen in vele gedaanten voor in het secundair onderwijs, soms open en bloot, zoals in de tweede graad, maar nu en dan ook op onverwachte plaatsen verspreid over alle jaren. In deze loep werken we relevante toepassingen uit, zoals thermische uitzetting en temperatuurschalen. We laten zien hoe je eerstegraadsfuncties kunt inzetten bij het voorbereiden van de kettingregel voor afgeleiden en we bespreken differenties bij eerstegraadsfuncties met één en met twee veranderlijken. Tot slot bespreken we twee toepassingen in de statistiek: regressielijnen die een samenhang in bepaalde datasets beschrijven en de Q-Q plot (quantile-quantile plot).

[ Lees meer ]

Logaritmen

We willen in deze loep enkele korte stukjes en lesactiviteiten toevoegen aan de gebruikelijke leerstof over logaritmen. We laten zien hoe logaritmen ontstaan zijn om het cijferwerk te vergemakkelijken door vermenigvuldigingen om te zetten in optellingen. Door leerlingen even kennis te laten maken met logaritmetabellen of rekenlinialen, kunnen ze het historisch belang van de rekenregel over de logaritme van een product inzien. Verder bespreken we enkele mooie toepassingen: het gebruik van logaritmen om zicht te krijgen op heel grote getallen, logaritmische schalen die in zekere zin ‘natuurlijker’ zijn dan lineaire schalen als het gaat over menselijke waarnemingen, de decibelschaal voor geluidssterkte, audiogrammen die gebruikt worden bij gehoortesten en ten slotte ‘de wet van Benford’ over het eerste cijfer van getallen in datasets. De afzonderlijke stukjes en lesactiviteiten kun je afzonderlijk inlassen in je lessen.

[ Lees meer ]

Teltechnieken

Het eerste deel is een lessenreeks over telproblemen voor leerlingen van de derde graad in een wiskundeluwe richting. Veel aandacht gaat naar het analyseren van telproblemen alvorens te beginnen rekenen. De combinaties, variaties en permutaties, met of zonder herhaling, worden gekoppeld aan typevoorbeelden en gecombineerd in enkele complexere telproblemen. Het tweede deel, voor leerlingen in sterke wiskunderichtingen, bevat twee onderzoeksonderwerpen: het tellen van kleuringen van objecten met symmetrie en het tellen van muzikale akkoorden.

[ Lees meer ]

Redeneren en bewijzen in de eerste graad

We zouden graag hebben dat leerlingen het woord 'bewijs' associëren met een kans om te redeneren, om te groeien in inzicht. Het leren verwoorden van (eigen) redeneringen en het inspelen op de nieuwsgierigheid naar het waarom, mogen volgens ons de meeste aandacht krijgen. Daarom is het belangrijk om niet alleen bewijzen als theorie aan te bieden, maar ook genoeg bewijsoefeningen. We geven voorbeelden uit de getallenleer, bewijzen met hoeken, met congruente driehoeken en over en met oppervlakte;

[ Lees meer ]

Gewoon mooie oefeningen

Je vindt in dit nummer een verzameling losse oefeningen met als enig gemeenschappelijk kenmerk dat wij ze mooi vinden. Het zijn oefeningen op de ‘gewone’ leerstof, niet bedoeld om iets nieuws in te leiden of ook niet als onderzoeksopdracht. Gewoon een loep vol inspirerende oefeningen over de graden heen die we graag delen met onze lezers!

[ Lees meer ]

Wiskunde 3 uur gewikt en gewogen

We namen eindtermen en leerplannen van richtingen met 3 uur wiskunde in het ASO door. We merkten enorm grote verschillen en heel wat keuzemogelijkheden voor leraren. In deze loep vind je een vergelijking tussen de leerplannen over de koepels heen. Je leest er meningen van leraren over keuzes die ze maken. We kijken naar de doorstroom van leerlingen uit deze richtingen naar het hoger onderwijs. Doorheen de loep vind je lesideetjes. We willen inspiratie bieden aan vakgroepen om de invulling van deze richtingen te herbekijken en te evalueren.

[ Lees meer ]

Wiskundeprojecten in fysische contexten

Wiskunde en fysica zijn altijd nauw met elkaar verbonden geweest. In deze loep ligt de klemtoon op wiskundige activiteiten: er wordt gewerkt met functies, grafieken, ongelijkheden, driehoeken, cirkels en integralen. Maar de context waarin dit gebeurt is telkens ontleend aan de fysica: zwaartepunten, evenwicht, drijven, traagheidsmassa van rondtollende lichamen... We steunen hierbij op fysische wetten die we als uitgangspunten gebruiken zonder ze op zichzelf te bestuderen. De resultaten die wiskundig uit de bus komen, zijn vaak onvoorspelbaar en spectaculair. Soms kun je ze controleren door een fysisch experiment in de wiskundeles.

[ Lees meer ]

Probleemoplossend denken, een zaak van elke dag

Het oplossen van problemen vraagt een combinatie van kennis, vaardigheden en ‘erin geloven’. Leren problemen oplossen is een zaak van elke dag. In deze loep laten we met veel voorbeelden voor verschillende graden en studierichtingen zien hoe dit in nagenoeg elke wiskundeles kan gebeuren, bij de gewone leerstof. Veel stukjes theorie en veel oefeningen kun je presenteren als problemen die moeten worden opgelost. Hoe kan de leraar als expert en coach dit best begeleiden? Hoe zorgt hij voor een uitnodigende sfeer waarin leerlingen zich durven gooien?

[ Lees meer ]