Onder de loep

In elk nummer wordt een deel van het leerplan of een aspect van het wiskundeonderwijs onder de loep genomen en uitgewerkt in een ruimer artikel.

Economische contexten in wiskundelessen

Wiskunde wordt in allerlei andere disciplines gebruikt. Economie is een van deze disciplines. Toch zijn economische contexten nog niet zo sterk doorgedrongen in wiskundelessen. Daar willen we met deze loep verandering in brengen. We werkten vier toepassingen uit die goed aansluiten bij de leerplannen van de tweede en derde graad. En passant geven we de wiskundeleraar een pak economische achtergrondkennis mee. Vier onderwerpen komen aan bod: optimale verdeling van geproduceerde goederen over twee markten, een pittig extremumprobleem met eerste- en tweedegraadsfuncties, gebruik van afgeleiden en integralen bij marginale kosten en opbrengsten, en, tot slot, een blik op Lorenzkrommen en Ginicoëfficiënt vanuit de beschrijvende statistiek en de analyse.

[ Lees meer ]

Ruimtemeetkunde in de tweede graad

Ruimtelijk inzicht is van fundamenteel belang voor ieder van ons en we kunnen het verbeteren door te oefenen. Reden genoeg om ruimtelijk inzicht centraal te stellen in onze lessen ruimtemeetkunde. In het bijzonder richten we ons in deze loep op de lessen ruimtemeetkunde van de tweede graad, al kan een deel van het materiaal ook in de eerste graad worden gebruikt. Aan de hand van een powerpoint geven we een mogelijke manier om de lessen ruimtemeetkunde van het vierde jaar op een attractieve manier te starten en zo de interesse van de leerlingen te wekken. Daarna bekijken we een aantal kortere lesactiviteiten waarbij we het 'zien' in de ruimte centraal stellen. Volgende items komen hierbij aan bod: ontwikkelingen, aanzichten, series van doorsneden, onderlinge ligging van rechten (snijden of kruisen), toepassingen van vlakke meetkunde in de ruimte en een klein onderzoek naar de oppervlakte van een kegel. We behandelen ook een lesactiviteit over de doorsnede van een kubus met een vlak. Het doel hierbij is niet de ‘snijkunde’ op zich, maar wel willen we de leerlingen de zinvolheid van eigenschappen laten ervaren in redeneringen op ruimtelijke situaties.

[ Lees meer ]

Oneindig en oneindig is twee

Het begrip ‘oneindig’ is fascinerend en duikt regelmatig op in wiskundelessen, van het eerste tot het zesde jaar. Maar het is een begrip dat vele ladingen dekt. We kunnen oneindig zien als een (onbegrensd) aantal, als het kardinaalgetal van een oneindige verzameling. Er blijken verschillende oneindige kardinaalgetallen te bestaan. Oneindig duikt ook op bij limieten van rijen en functies. Dan gaat het helemaal niet over een aantal, maar over een dynamisch proces. Wat bedoelen we als we zeggen dat x ‘naar oneindig’ gaat? In deze loep geven we ideeën en materiaal om met leerlingen dieper in te gaan op het oneindige, zowel in de eerste en de tweede graad als in de derde graad.

[ Lees meer ]

Een normaal getal zien, en dan sterven

De loep van dit nummer is de tekst van de plenaire voordracht op onze feeststudiedag van 15 maart 2014. Philippe Cara gaat in op verrassende eigenschappen van de irrationale, de transcendente en de normale getallen. Deze laatste soort is minder bekend maar is de laatste tijd onder wiskundigen een ‘hot topic’ geworden. Het geheel is gekruid met historische weetjes. Zo kan elke soort getallen met een sterfgeval in verband worden gebracht (vandaar de titel). Mooie bewijzen worden niet geschuwd en hier en daar duikt een nog onopgelost probleem op. De aandachtige lezer leert zeker veel bij over de wondere wereld van de getallen.

[ Lees meer ]

Beschrijvende statistiek in de tweede graad

In het leerplan vinden we de doelstelling: “leerlingen moeten verschillende grafische voorstellingen van statistische gegevens gebruiken en interpreteren”. Hiervoor is het nodig dat leerlingen de technische aspecten van statistiek leren, zoals een gemiddelde bepalen, gegevens voorstellen, een standaardafwijking berekenen… In handboeken vind je veel en waardevol materiaal terug. In deze loep is het niet de bedoeling om dit materiaal verder uit te breiden. We leggen de klemtoon op de meer conceptuele aspecten zoals wat is de betekenis van het gemiddelde, wanneer is de mediaan meer aangewezen dan het gemiddelde of waarvoor kun je een spreidingsmaat als de standaardafwijking gebruiken. Daarnaast vonden we tijdens onze zoektocht op het internet verrassend materiaal om grote hoeveelheden data voor te stellen. In het laatste stukje laten we je daar even van proeven.

[ Lees meer ]

Meetkundige plaatsen

Meetkundige plaatsen vormen een belangrijk aspect van meetkunde, een bril waarmee je figuren leert zien als ‘plaatsen’ waar variabele punten op mogen bewegen. In de eerste graad kunnen middelloodlijnen, bissectrices en cirkels als meetkundige plaatsen bekeken worden en zijn er ook oefeningen mogelijk over transformaties waarbij meetkundige plaatsen een rol spelen. In de tweede graad kunnen bekende maar ook meer verrassende meetkundige plaatsen leerlingen motiveren voor de werkwijze van de analytische meetkunde. In de derde graad is er een keuzeonderwerp ‘analytische meetkunde’ in de sterke wiskunderichtingen, met onder andere de methode van de geassocieerde krommen. Dit onderwerp stimuleert volop het meetkundig en analytisch denken van de leerlingen, zeker wanneer analytische en synthetische methodes bij elkaar komen.

[ Lees meer ]

Wiskunde en informatica

Deze loep gaat niet over het gebruik van ICT in wiskundelessen, maar over hoe wiskunde bijdraagt aan de wetenschappelijke discipline informatica. Deze wetenschap bestudeert bijvoorbeeld de architectuur van computers, algoritmen, netwerken, databanken, programmeertalen, artificiële intelligentie... We werken drie onderwerpen uit: de rol van wiskunde bij het bestuderen van algoritmen, het gebruik van (vooral veelterm)functies bij de beschrijving van de complexiteit van zoek‐ en sorteeralgoritmen, en foutenverbeterende codes. Met het uitgewerkte materiaal toon je leerlingen mooie toepassingen van wiskunde in een ander domein, maar gun je hen (en jezelf) ook een blik op wat informatica echt inhoudt.

[ Lees meer ]

Het astrolabium

In dit nummer maak je aan de hand van een model bestaande uit verhard papier en transparant kennis met een tiende-eeuws astrolabium uit Bagdad. In de middeleeuwen was Bagdad een stad waar wiskunde en wetenschappen een hoge bloei kenden. Een astrolabium is een vlakke schijf die de sterrenhemel voorstelt en die je kunt draaien ten opzichte van de horizon van een waarnemer. Het bij dit nummer gevoegde model is berekend voor de breedtegraad van Vlaanderen. Om te begrijpen wat het astrolabium is en hoe je ermee kunt werken, is ruimtelijk inzicht vereist. Aan de hand van enkele concrete opdrachten leren de leerlingen het astrolabium gebruiken. De projectiemethode die gebruikt is om de sterrenhemel op het astrolabium af te beelden heet stereografische projectie. Een eigenschap van stereografische projectie is dat cirkels op de hemelsfeer afgebeeld worden als cirkels op het astrolabium.

[ Lees meer ]

Goniometrie in 3, 4 en 5

Goniometrie is van alle tijden, zowel binnen als buiten het klaslokaal. Hoewel het onderwerp bij onze lezers goed bekend is, willen we hier enkele accenten leggen bij de leerstof over rechthoekige en willekeurige driehoeken en hun toepassingen, verwante hoeken en periodieke functies. Daarnaast vermelden we enkele boeiende zijsprongen voor sommige leerlingen: exacte berekening van goniometrische getallen met wortelvormen en het optellen van algemene sinusfuncties aan de hand van de optelling van vectoren.

[ Lees meer ]

Wiskunde en taal

Sommige leerlingen hebben het moeilijk met wiskunde omdat ze struikelen over taal. Dit is een probleem van anderstalige leerlingen maar het komt ook vaak voor bij leerlingen die Nederlands als moedertaal hebben. Hoe ga je er als wiskundeleerkracht mee om en wat ligt binnen je verantwoordelijkheid? Vanuit problemen in onze eigen klaspraktijk zochten we in de literatuur naar meer informatie. Een belangrijk inzicht dat we meekregen is dat je leerlingen niet minder maar juist meer met taal moet laten bezig zijn. Dit kan door rijke contexten aan te bieden, interactie uit te lokken en taalsteun te geven. We zochten uit wat dit kan betekenen voor je klaspraktijk en merkten dat kleine ingrepen al voor een positief effect kunnen zorgen.

[ Lees meer ]