Onder de loep

In elk nummer wordt een deel van het leerplan of een aspect van het wiskundeonderwijs onder de loep genomen en uitgewerkt in een ruimer artikel.

Veeltermbenaderingen en machtreeksen

Veeltermfuncties worden vaak gebruikt om ‘moeilijkere’ functies te benaderen. Door ervoor te zorgen dat in een punt de opeenvolgende afgeleiden tot een bepaalde graad van de veeltermfunctie en de gegeven functie gelijk zijn, ontstaat een Taylorveelterm. Met GeoGebra kunnen leerlingen de grafiek van de functie vergelijken met die van zijn Taylorveeltermbenaderingen. We bewijzen een afschatting voor de ‘fout’ bij het vervangen van de functie door zo’n benadering. Een volgende stap is het werken met een ‘machtreeks’, een soort oneindige veelterm die in een bepaald gebied naar de functie kan convergeren. Dit levert een nieuwe bril op om de functie te bestuderen en zelfs te veralgemenen tot een complexe functie. We besteden aandacht aan de geschiedenis van deze veeltermen en machtreeksen alsook aan hun nut in de fysica en in de wiskunde. Een geschikt onderwerp voor leerlingen van het laatste jaar met minstens 6 wekelijkse lesuren wiskunde...

[ Lees meer ]

Wiskunde en gezondheid

We richten ons op toepassingen van wiskunde in de medische wereld. Voor de A- en B-stroom in de eerste graad werkten we activiteiten uit die kaderen in een themaweek rond gezonde voeding en rond genotsmiddelen. Verder presenteren we materiaal over farmaceutisch rekenen, voor leerlingen van het vijfde jaar tso met 2 uur wiskunde per week en bruikbaar bij het leerplanonderdeel mathematiseren. Voor richtingen uit de derde graad met minimaal 4 u wiskunde per week werkten we toepassingen over exponentiële functies en rijen uit in de context van de farmacokinetiek: hoe evolueert de concentratie van een geneesmiddel in het lichaam?

[ Lees meer ]

Tensegrities

Tensegrities zijn een soort ruimtelijke constructies met staafjes en touwtjes die elkaar door trek- en spankrachten in evenwicht houden. In deze loep behandelen we bepaalde klassen van tensegrities die eenvoudig wiskundig kunnen worden nagerekend. Naast heel wat ruimtelijk inzicht volstaat hiervoor de wiskunde uit het vierde jaar. Met behulp van een 3D- designprogramma kunnen leerlingen daarna ook creatief aan de slag en hun eigen ontwerp maken. Als kers op de taart kunnen ze deze objecten tot slot nog knutselen.

[ Lees meer ]

Verrijkende activiteiten in de eerste graad

De eerste graad is voor de leerlingen wennen aan een nieuwe wereld. De leerlingen komen uit verschillende lagere scholen en het niveau, zowel voor taal als voor wiskunde, is soms heel uiteenlopend. Daarom is het voor veel leerlingen nodig dat een deel van de leerstof van de lagere school wordt hernomen, terwijl anderen vooral uitkijken naar het 'nieuwe' dat ze op de grote school komen leren. Veel leerkrachten van de eerste graad zijn op zoek gegaan naar verrijkende activiteiten om al hun leerlingen de boeiende wereld van de wiskunde en haar toepassingen te laten ontdekken. In deze loep laten we enkele van deze collega’s aan het woord.

[ Lees meer ]

Wiskunde achter beeldverwerking

Bijna alle foto's en films worden tegenwoordig digitaal gemaakt en opgeslagen. We maken kennis met de wiskunde achter een digitale foto. Een digitale foto is een rooster met getallen. Wat is de samenhang met grijswaarden? Welke transformaties kunnen we uitvoeren om het contrast bij te regelen, een 'negatieve' foto te bekomen ...? Wat betekenen de histogrammen die op het schermpje van digitale fototoestellen verschijnen? We tellen ook beelden op en geven voorbeelden van visuele cryptografie: hoe kun je een geheime boodschap of beeld in een ander beeld verstoppen en het er weer uithalen? We gaan ook in op het comprimeren van beeldbestanden. Dit laatste onderwerp gaat wiskundig een stuk verder, daarom beperken we ons tot 'fractale compressie'.

[ Lees meer ]

Verrassende wiskunde

In deze loep komen allerlei problemen aan bod waarvan de uitkomst ons op een of andere manier verrast. Het niveau van de onderwerpen bestrijkt zowel de eerste, tweede als derde graad. Bij sommige problemen blijkt het eerste antwoord dat in je opkomt bij nader inzien totaal fout te zijn. Enkel met een kritische blik op het eindantwoord of een goed onderbouwde, wiskundige redenering kun je anderen (en jezelf!) overtuigen dat het eindresultaat anders is. Sommige problemen sluiten rechtstreeks aan bij de leerstofonderdelen. Zo past een teken-activiteit met vierhoeken in de eerste graad. Een kansspel dat op een verrassende manier leidt tot een fractaal, kan zowel bij rijen als bij kansrekening aan bod komen. Een onverwacht limietgeval hoort dan weer thuis bij de regel van de l'Hospital in de derde graad. Andere problemen in deze loep staan eerder los van de leerstof wiskunde in het secundair onderwijs, maar zijn daarom niet minder interessant. Zoals de reden waarom het lijkt alsof je vrienden op Facebook gemiddeld meer vrienden hebben dan jezelf, en waarom het verkeer soms vlotter kan doorrijden door een welbepaalde straat te verwijderen. In deze loep kunnen de stukjes onafhankelijk van elkaar gelezen worden.

[ Lees meer ]

Wiskunde-leren activeren

Een wiskundeleraar wil in de eerste plaats dat zijn leerlingen wiskunde leren. Het leren is iets wat de leerling zelf moet doen. Dit gebeurt in de klas, maar ook daarbuiten. Naast activerende werkvormen voor in de klas, zochten we naar manieren om meer impact te hebben op het leren buiten de klas. Zowel in de klas als daarbuiten kan dit online of offline gebeuren. De auteurs geven een persoonlijk verslag van hoe zij dit proberen te realiseren.

[ Lees meer ]

Wiskunde en fysica

In fysica wordt voortdurend gebruik gemaakt van technieken uit wiskunde en omgekeerd worden in de les wiskunde vaak voorbeelden en toepassingen uit fysica bestudeerd. Leerlingen maken de transfer tussen de twee vakken niet automatisch en hebben daar vaak moeite mee. Deze loep biedt inspiratie om de samenhang tussen beide vakken te tonen. We gaan dieper in op begrippen en benamingen die in de les fysica gebruikt worden met betrekking tot vectoren. Ook het scalair en vectorieel product komen aan bod in fysische contexten. Verder zoeken we methoden om het zwaartepunt van vlakke figuren te bepalen. Dat doen we zowel experimenteel als theoretisch, wat een mooie toepassing van integraalrekening oplevert. We behandelen ook een modelleeropdracht waarbij we een antwoord zoeken op een aantal vragen met betrekking tot de regen. Hoe blijf je zo droog mogelijk wanneer je zonder paraplu door een regenbui moet? Tot slot gaan we dieper in op de wiskunde bij de slingerbeweging. We helpen je op weg om zelf een ‘pendulum wave’ te maken, een golf van slingers met verschillende lengte.

[ Lees meer ]

Veeltermvergelijkingen van vroeger tot nu

We brengen leerlingen van de 21ste eeuw in contact met hoe Egyptenaren in de oudheid, Arabieren in de middeleeuwen en Italianen in de renaissance vergelijkingen oplosten. Egyptenaren losten eerstegraadsvergelijkingen op met een gok die ze aanpasten door te verdubbelen en te halveren. Ook de middeleeuwse ‘regula falsi’ start met één of twee gissingen, waarmee de oplossing berekend wordt. De recepten van Al-Khwarizmi om tweedegraadsvergelijkingen op te lossen, werden met ingenieuze meetkundige puzzels verklaard. De geschiedenis van de derde- en hogeregraadsvergelijkingen in de renaissance en erna vormt een ware thriller. Met deze mooie stukjes historische wiskunde hopen we dat de leerlingen ons vak meer als een boeiend menselijk avontuur dan als een afgewerkt product ervaren. Bovendien gaan ze de efficiëntie van de huidige wiskundige oplossingsmethodes beter appreciëren als ze geconfronteerd worden met de moeilijkheden van vroeger, toen men het zonder negatieve getallen en zonder onze handige algebraïsche schrijfwijze moest doen.

[ Lees meer ]

Economische contexten in wiskundelessen

Wiskunde wordt in allerlei andere disciplines gebruikt. Economie is een van deze disciplines. Toch zijn economische contexten nog niet zo sterk doorgedrongen in wiskundelessen. Daar willen we met deze loep verandering in brengen. We werkten vier toepassingen uit die goed aansluiten bij de leerplannen van de tweede en derde graad. En passant geven we de wiskundeleraar een pak economische achtergrondkennis mee. Vier onderwerpen komen aan bod: optimale verdeling van geproduceerde goederen over twee markten, een pittig extremumprobleem met eerste- en tweedegraadsfuncties, gebruik van afgeleiden en integralen bij marginale kosten en opbrengsten, en, tot slot, een blik op Lorenzkrommen en Ginicoëfficiënt vanuit de beschrijvende statistiek en de analyse.

[ Lees meer ]