Even kennismaken? Ik ben Luc Van den Broeck. Al ruim 30 jaar geef ik wiskundeles, aanvankelijk in TSO, nu in ASO. Momenteel werk ik in EDUGO campus De Toren in Oostakker. Tussendoor stel ik vragen op voor de Vlaamse Wiskunde Olympiade en zetel ik in de jury. Speciale zorg wil ik besteden aan de wiskundige overgang van secundair naar hoger onderwijs. Daarom werkte ik ook mee aan de reeks SOHO#WiskundePlantyn.

Kansrekening in Werking, een moderne aanpak, Henk Tijms

Zebra-reeks nr. 52, Epsilon, Amsterdam, 2018, 66 pp., ISBN978-90-5041-171-1 In het jaar 2000 schreef Henk Tijms, toen nog docent aan de Vrije Universiteit van Amsterdam, samen met twee collega's zijn eerste Zebraboekje, Poisson, de Pruisen en de Lotto, helemaal gewijd aan de statistiek van zeldzame gebeurtenissen. Sindsdien hebben we in Uitwiskeling nog enkele malen een

[ Lees meer ]

De (max, +)-algebra, Gerardo Soto y Koelemeijer

Zebra-reeks nr. 53, Epsilon, Amsterdam, 68 pp., ISBN 978-90-5041-172-1. Het boekje in de Zebra-reeks heb ik in één teug leeggelezen. En daarna heb ik onmiddellijk een rekenblad geopend om na te rekenen of alles wel klopte. Je doet dit wellicht ook als je dit boekje in handen krijgt, tenminste indien je van onconventionele en onverwachte

[ Lees meer ]

Vergeten begrippen (4): Wijzer en mantisse

Ik ben nog jong maar soms voelt dit anders aan. Vooral wanneer ik mijn leerlingen mijn afgeleefde logaritmetafels toon, het tabellenboekje waarin ik tot aan het einde van de zeventiger jaren logaritmen en goniometrische waarden opzocht tot op vijf cijfers na de komma. Ik, en wellicht ook mijn vader, gebruikte op school de tafels van N. J. Schons en C. De Cock. In die tijd ‘de tiende uitgaaf’. [caption id="attachment_11499" align="aligncenter" width="572"] Figuur 1 Uit een logartimeboekje[/caption]   In het vierde jaar leerden we sinussen en cosinussen, tangensen en cotangensen berekenen van hoeken, nauwkeurig tot op één seconde. De tabellen…

[ Lees meer ]

Hoe dik mogen staarten zijn?

Ik heb altijd al een voorliefde gehad voor paradoxen in verband met oneindig: eindige sommen van een oneindig aantal positieve getallen, eindige oppervlakten van een oneindig lang oppervlak, eindige inhouden van lichamen met een oneindige oppervlakte ... Het inzicht in het begrip oneindig ontwikkelt zich door de leerjaren heen. In de tweede graad is het voor veel leerlingen nog verbazend dat het oneindig doorlopende getal 1,999... precies gelijk is aan 2. In de derde graad wordt er intens gefocust op limieten en daardoor groeit het aanvaardingsproces van eindige grootheden bij oneindig doorlopende processen. In het zesde jaar laat ik me…

[ Lees meer ]

Vergeten begrippen (3): omwindende en omwondene

Deze wiskundige begrippen klinken zonder meer oubollig. Zelfs al heb je er al van gehoord, je moet diep nadenken om het onderscheid tussen beide begrippen te vatten. De omwindende onderneemt de actie, de omwondene ondergaat de actie net zoals bij de overwinnende en de overwonnene. [caption id="attachment_8669" align="alignright" width="303"] Figuur 1 Omwindende en omwondene[/caption] De actie waar het hier om gaat is het inwikkelen met een draad. Stel dat er een oneindig lange draad gewikkeld is rond de kromme [latex]k[/latex] van figuur 1, dan is [latex]k[/latex] de omwondene. Als je het draadje ergens doorknipt (bijvoorbeeld in de top) en je…

[ Lees meer ]

Famous Inequality Worth Knowing: RMS-AM-GM-HM Inequality

‘Hi, this is Presh Talwalkar.’ Als trouwe lezer van UW of als fervente kijker van YouTube wiskundefilmpjes klinkt deze intro je wellicht vertrouwd in de oren. Presh Talwalkar runt sinds 2012 de wiskundeblog Mind Your Decisions waarop hij in een flink tempo wiskundige raadsels, teasers en wetenswaardigheden post.  Het filmpje dat ik vandaag bekeek, gaf me een nieuwe kijk op gemiddelden. Vier gemiddelden Als iemand je in het Engels vraagt om het gemiddelde van twee getallen te berekenen, hoor je als wiskundige het volgende antwoord te geven: What kind of mean do you mean? Vaak kan je uit de context…

[ Lees meer ]

D. Huylebrouck, Wiskunst

Garant, Antwerpen-Apeldoorn 2016, 331 pp., 978-90-441-3433-9 Dirk Huylebrouck doctoreerde in 1986 in de wiskunde aan de UGent en is momenteel, na omzwervingen in Congo en Burundi, docent aan de faculteit architectuur van de KULeuven op de campussen van Sint-Lucas. In Vlaanderen staat Dirk Huylebrouck bekend als een vurige reclamemaker voor de populaire wiskunde. We kennen

[ Lees meer ]

G. Sanderson, Why is pi here? And why is it squared? A geometric answer to the Basel Problem

Wie vaak YouTubefilmpje over wiskunde bekijkt, zal wellicht al kennis gemaakt hebben met het kanaal van Grant Sanderson, 3Blue1Brown. Met zijn iris die voor driekwart blauw is en voor één kwart bruin probeert hij bepaalde wiskunde­problemen vanuit een ander standpunt te bekijken. De filmpjes die hij elke maand op de derde vrijdag post, zijn een combinatie van wiskunde en kunst. Ze staan vol van prachtige computeranimaties die ervoor zorgen dat de belichte begrippen voor lange tijd in het geheugen gegrift blijven. [caption id="attachment_8026" align="aligncenter" width="382"] Figuur 1 Het logo van 3Blue1Brown[/caption]   Welke onderwerpen worden aangesneden? In de reeks ‘essence…

[ Lees meer ]

Driehoeken met onderling 5 gelijke zijden en hoeken

Om congruentie van driehoeken te hebben zijn drie voorwaarden vaak voldoende, bijvoorbeeld in het geval ZZZ of ZHZ of HZH (maar niet in het geval HHH). Twee driehoeken die onderling vijf hoeken of zijden gelijk hebben, kunnen per uitzondering gelijkvormig zijn zonder con­gruent te zijn. Dit is het geval bij de zogenaamde 5-con driehoeken. Ze hebben onderling drie hoeken en twee zijden gelijk. Hierover gaat deze korte bijdrage, die leerkrachten uit een vierde jaar aso en tso zou kunnen inspireren tot een interessante onderzoeksvraag. Bekijk even de onderstaande driehoeken: de eerste heeft zijden 8, 12 en 18 en de tweede…

[ Lees meer ]

Vergeten begrippen (2): onderling onmeetbaar

De meetkundige begrippen ‘onmeetbaar’ en ‘onderling onmeetbaar’ verhouden zich tot elkaar als de meer bekende rekenkundige begrippen ‘ondeelbaar’ en ‘onderling ondeelbaar’. Twee getallen die ‘onderling ondeelbaar’ zijn hoeven niet ‘ondeelbaar’ (of priem) te zijn. Ze mogen alleen geen gemeenschappelijke deler hebben buiten 1. Zo zijn de getallen 33 en 35 onderling ondeelbaar. Maar individueel zijn ze wel deelbaar: 35 door 5 en 7 en 33 door 3 en 11. Op een gelijkaardige manier kijken we naar ‘onderling onmeetbare’ lijnstukken. Individueel zijn ze wel meetbaar met een eindig latje. Maar ze zijn niet meetbaar met hetzelfde latje. Zijn dan niet alle…

[ Lees meer ]